Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.410
Filtrar
1.
Protein Sci ; 33(2): e4897, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38284488

RESUMO

The HEMK2 protein methyltransferase has been described as glutamine methyltransferase catalyzing ERF1-Q185me1 and lysine methyltransferase catalyzing H4K12me1. Methylation of two distinct target residues is unique for this class of enzymes. To understand the specific catalytic adaptations of HEMK2 allowing it to master this chemically challenging task, we conducted a detailed investigation of the substrate sequence specificities of HEMK2 for Q- and K-methylation. Our data show that HEMK2 prefers methylation of Q over K at peptide and protein level. Moreover, the ERF1 sequence is strongly preferred as substrate over the H4K12 sequence. With peptide SPOT array methylation experiments, we show that Q-methylation preferentially occurs in a G-Q-X3 -R context, while K-methylation prefers S/T at the first position of the motif. Based on this, we identified novel HEMK2 K-methylation peptide substrates with sequences taken from human proteins which are methylated with high activity. Since H4K12 methylation by HEMK2 was very low, other protein lysine methyltransferases were examined for their ability to methylate the H4K12 site. We show that SETD6 has a high H4K12me1 methylation activity (about 1000-times stronger than HEMK2) and this enzyme is mainly responsible for H4K12me1 in DU145 prostate cancer cells.


Assuntos
Glutamina , Lisina , DNA Metiltransferases Sítio Específica (Adenina-Específica) , Humanos , Glutamina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Lisina/metabolismo , Metilação , Peptídeos/química , Proteínas Metiltransferases/metabolismo , Especificidade por Substrato , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética
2.
Molecules ; 29(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257273

RESUMO

The immune system protects our body from bacteria, viruses, and toxins and removes malignant cells. Activation of immune cells requires the onset of a network of important signaling proteins. Methylation of these proteins affects their structure and biological function. Under stimulation, T cells, B cells, and other immune cells undergo activation, development, proliferation, differentiation, and manufacture of cytokines and antibodies. Methyltransferases alter the above processes and lead to diverse outcomes depending on the degree and type of methylation. In the previous two decades, methyltransferases have been reported to mediate a great variety of immune stages. Elucidating the roles of methylation in immunity not only contributes to understanding the immune mechanism but is helpful in the development of new immunotherapeutic strategies. Hence, we review herein the studies on methylation in immunity, aiming to provide ideas for new approaches.


Assuntos
Metiltransferases , Proteínas Metiltransferases , Anticorpos , Linfócitos B , Diferenciação Celular
3.
Med Sci (Paris) ; 39 Hors série n° 1: 11-14, 2023 Nov.
Artigo em Francês | MEDLINE | ID: mdl-37975764

RESUMO

Adult skeletal muscle is composed of thousands of fibers (also called myofibers) that contract thus allowing voluntary movements. Following an injury, muscle stem cells, surrounding the myofibers, activate, proliferate, and differentiate to form de novo myofibers. These steps constitute a process called adult (or regenerative) myogenesis. This process is possible thanks to various transcription factors sequentially expressed and regulated by epigenetic factors that modulate the chromatin and therefore lead to the regulation of gene expression. Gene expression changes consequently affect the fate of muscle stem cells. Histone Lysine Methyltransferases methylate some histones involved in the repression of gene expression. We describe here the role of SETDB1 during adult myogenesis, notably its role during muscle stem cell differentiation.


Title: Histones méthyltransférases et myogenèse régénérative - Un focus sur SETDB1. Abstract: Le muscle strié squelettique adulte est composé de milliers de fibres (myofibres) capables de se contracter, permettant ainsi les mouvements volontaires. Après une lésion musculaire, les cellules souches musculaires localisées autour des myofibres s'activent, prolifèrent et se différencient pour former de nouvelles myofibres. Ces différentes étapes forment un processus appelé myogenèse. Cette dernière est rendue possible grâce à l'expression séquentielle de facteurs de transcription régulés par des facteurs épigénétiques qui agissent sur la chromatine afin de moduler l'expression génique et ainsi, le devenir de la cellule souche. Les histones méthyltransférases déposent des marques dites méthyl sur certaines histones afin d'induire la répression génique de régions spécifiques. Nous décrivons ici le rôle de SETDB1 au cours de la myogenèse adulte, et plus spécifiquement pendant la différenciation des cellules souches musculaires.


Assuntos
Histonas , Fatores de Transcrição , Humanos , Adulto , Histona Metiltransferases/metabolismo , Fatores de Transcrição/metabolismo , Histonas/metabolismo , Diferenciação Celular/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/fisiologia , Proteínas Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase
4.
PLoS One ; 18(7): e0288791, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37506102

RESUMO

Protein and DNA methylation is involved in various biological functions such as signal transmission, DNA repair, and gene expression. Abnormal regulation of methyltransferases has been linked to multiple types of cancer, but its link to autophagy and carcinogenesis in breast and lung cancer is not fully understood. We utilized UALCAN, a web tool, to investigate breast and lung cancer database from The Cancer Genome Atlas. We found that 17 methyltransferases are upregulated in breast and/or lung cancer. We investigated the effect of methylation inhibition on two breast cancer cell lines (MDA-MB-231 and MCF-7) and two lung cancer cell lines (H292 and A549) by treating them with the indirect methyltransferase inhibitor adenosine dialdehyde (AdOx). We found that the migration ability of all cell lines was decreased, and the growth rate of MDA-MB-231, MCF-7 and H292 was also decreased after AdOx treatment. These results were correlated with an inhibition of the autophagy in MDA-MB-231, MCF-7 and H292 cell lines, since AdOx treatment induced a decreased expression of ATG7, a reduced ratio LC3-II/LC3-I and an increased p62 level. These findings suggest that inhibiting cells' methylation ability could be a potential target for breast and lung cancer treatment.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Humanos , Feminino , Proteínas Metiltransferases/farmacologia , Células MCF-7 , Metilação de DNA , Autofagia , DNA , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proliferação de Células , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Apoptose
5.
PLoS One ; 18(6): e0287558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37347777

RESUMO

The methyltransferase-like protein 13 (METTL13) methylates the eukaryotic elongation factor 1 alpha (eEF1A) on two locations: the N-terminal amino group and lysine 55. The absence of this methylation leads to reduced protein synthesis and cell proliferation in human cancer cells. Previous studies showed that METTL13 is dispensable in non-transformed cells, making it potentially interesting for cancer therapy. However, METTL13 has not been examined yet in whole animals. Here, we used the nematode Caenorhabditis elegans as a simple model to assess the functions of METTL13. Using methyltransferase assays and mass spectrometry, we show that the C. elegans METTL13 (METL-13) methylates eEF1A (EEF-1A) in the same way as the human protein. Crucially, the cancer-promoting role of METL-13 is also conserved and depends on the methylation of EEF-1A, like in human cells. At the same time, METL-13 appears dispensable for animal growth, development, and stress responses. This makes C. elegans a convenient whole-animal model for studying METL13-dependent carcinogenesis without the complications of interfering with essential wild-type functions.


Assuntos
Neoplasias , Proteínas Metiltransferases , Animais , Humanos , Caenorhabditis elegans/genética , Metiltransferases/genética , Carcinogênese , Fator 1 de Elongação de Peptídeos/genética
6.
J Biol Chem ; 299(7): 104843, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209820

RESUMO

Protein posttranslation modifications (PTMs) are a critical regulatory mechanism of protein function. Protein α-N-terminal (Nα) methylation is a conserved PTM across prokaryotes and eukaryotes. Studies of the Nα methyltransferases responsible for Να methylation and their substrate proteins have shown that the PTM involves diverse biological processes, including protein synthesis and degradation, cell division, DNA damage response, and transcription regulation. This review provides an overview of the progress toward the regulatory function of Να methyltransferases and their substrate landscape. More than 200 proteins in humans and 45 in yeast are potential substrates for protein Nα methylation based on the canonical recognition motif, XP[KR]. Based on recent evidence for a less stringent motif requirement, the number of substrates might be increased, but further validation is needed to solidify this concept. A comparison of the motif in substrate orthologs in selected eukaryotic species indicates intriguing gain and loss of the motif across the evolutionary landscape. We discuss the state of knowledge in the field that has provided insights into the regulation of protein Να methyltransferases and their role in cellular physiology and disease. We also outline the current research tools that are key to understanding Να methylation. Finally, challenges are identified and discussed that would aid in unlocking a system-level view of the roles of Να methylation in diverse cellular pathways.


Assuntos
Proteínas Metiltransferases , Processamento de Proteína Pós-Traducional , Humanos , Metilação , Proteínas Metiltransferases/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos
7.
Cancer Biomark ; 36(4): 313-326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938730

RESUMO

BACKGROUND: We performed a bioinformatics analysis to screen for cell cycle-related differentially expressed genes (DEGs) and constructed a model for the prognostic prediction of patients with early-stage lung squamous cell carcinoma (LSCC). METHODS: From a gene expression omnibus (GEO) database, the GSE157011 dataset was randomly divided into an internal training group and an internal testing group at a 1:1 ratio, and the GSE30219, GSE37745, GSE42127, and GSE73403 datasets were merged as the external validation group. We performed single-sample gene set enrichment analysis (ssGSEA), univariate Cox analysis, and difference analysis, and identified 372 cell cycle-related genes. Additionally, we combined LASSO/Cox regression analysis to construct a prognostic model. Then, patients were divided into high-risk and low-risk groups according to risk scores. The internal testing group, discovery set, and external verification set were used to assess model reliability. We used a nomogram to predict patient prognoses based on clinical features and risk values. Clinical relevance analysis and the Human Protein Atlas (HPA) database were used to verify signature gene expression. RESULTS: Ten cell cycle-related DEGs (EIF2B1, FSD1L, FSTL3, ORC3, HMMR, SETD6, PRELP, PIGW, HSD17B6, and GNG7) were identified and a model based on the internal training group constructed. From this, patients in the low-risk group had a higher survival rate when compared with the high-risk group. Time-dependent receiver operating characteristic (tROC) and Cox regression analyses showed the model was efficient and accurate. Clinical relevance analysis and the HPA database showed that DEGs were significantly dysregulated in LSCC tissue. CONCLUSION: Our model predicted the prognosis of early-stage LSCC patients and demonstrated potential applications for clinical decision-making and individualized therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Proteínas Relacionadas à Folistatina , Neoplasias Pulmonares , Humanos , Prognóstico , Reprodutibilidade dos Testes , Carcinoma de Células Escamosas/genética , Ciclo Celular , Neoplasias Pulmonares/genética , Pulmão , Proteínas Metiltransferases
8.
J Biol Chem ; 299(6): 104661, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997089

RESUMO

Lysine methylation is an abundant posttranslational modification, which has been most intensively studied in the context of histone proteins, where it represents an important epigenetic mark. Lysine methylation of histone proteins is primarily catalyzed by SET-domain methyltransferases (MTases). However, it has recently become evident that also another MTase family, the so-called seven-ß-strand (7BS) MTases, often denoted METTLs (methyltransferase-like), contains several lysine (K)-specific MTases (KMTs). These enzymes catalyze the attachment of up to three methyl groups to lysine residues in specific substrate proteins, using S-adenosylmethionine (AdoMet) as methyl donor. About a decade ago, only a single human 7BS KMT was known, namely the histone-specific DOT1L, but 15 additional 7BS KMTs have now been discovered and characterized. These KMTs typically target a single nonhistone substrate that, in most cases, belongs to one of the following three protein groups: components of the cellular protein synthesis machinery, mitochondrial proteins, and molecular chaperones. This article provides an extensive overview and discussion of the human 7BS KMTs and their biochemical and biological roles.


Assuntos
Lisina , Metiltransferases , Humanos , Metiltransferases/metabolismo , Metilação , Lisina/metabolismo , Conformação Proteica em Folha beta , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Metiltransferases/metabolismo
9.
Redox Biol ; 60: 102626, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764215

RESUMO

Radioresistance is the major reason for the failure of radiotherapy in esophageal squamous cell carcinoma (ESCC). Previous evidence indicated that stanniocalcin 2 (STC2) participates in various biological processes of malignant tumors. However, researches on its effect on radioresistance in cancers are limited. In this study, STC2 was screened out by RNA-sequencing and bioinformatics analyses as a potential prognosis predictor of ESCC radiosensitivity and then was determined to facilitate radioresistance. We found that STC2 expression is increased in ESCC tissues compared to adjacent normal tissues, and a higher level of STC2 is associated with poor prognosis. Also, STC2 mRNA and protein expression levels were higher in radioresistant cells than in their parental cells. Further investigation revealed that STC2 could interact with protein methyltransferase 5 (PRMT5) and activate PRMT5, thus leading to the increased expression of symmetric dimethylation of histone H4 on Arg 3 (H4R3me2s). Mechanistically, STC2 can promote DDR through the homologous recombination and non-homologous end joining pathways by activating PRMT5. Meanwhile, STC2 can participate in SLC7A11-mediated ferroptosis in a PRMT5-dependent manner. Finally, these results were validated through in vivo experiments. These findings uncovered that STC2 might be an attractive therapeutic target to overcome ESCC radioresistance.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ferroptose , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/radioterapia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Ferroptose/genética , Proteínas Metiltransferases , Linhagem Celular Tumoral , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína-Arginina N-Metiltransferases/genética
10.
BMC Cancer ; 23(1): 18, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36604642

RESUMO

BACKGROUND: SET domain containing 6 (SETD6) has been shown to be upregulated in multiple human cancers and can promote malignant cell survival. However, expression and function of SETD6 in lung adenocarcinoma (LUAD) remains unaddressed. This study aimed to demonstrate the expression pattern, biological roles and potential mechanisms by which SETD6 dysregulation is associated with LUAD. METHODS: The expression level of SETD6 was evaluated in LUAD clinical specimens and its correlation with clinical parameters were analyzed. In vitro, gain-of-function and loss-of-function experiments were performed to evaluate the effects of SETD6 on cell proliferation, apoptosis, migration, and colony formation of LUAD cell line A549. Western-blot was performed to investigate the involvement of nuclear factor-κB (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways as downstream signaling of SETD6 in LUAD cells. RESULTS: Compared with non-tumorous tissues, SETD6 was overexpressed in tumor tissues, and its overexpression significantly correlates with higher rates of regional lymph node metastasis and poor prognosis in patients with LUAD. In A549 cell line, SETD6 overexpression could promote cell proliferation, migration, colony formation and inhibit cell apoptosis, whereas SETD6 knockdown caused the opposite effects. Furthermore, we demonstrated that the mechanisms underlying the effect of SETD6 on LUAD biological behaviors may be through its interaction with NF-κB and Nrf2 signaling pathways. CONCLUSIONS: SETD6, which is highly expressed in LUAD tumor tissues, plays an important role in promoting the malignant behaviors of LUAD via likely the NF-κB and Nrf2 signaling pathways.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteínas Metiltransferases/genética
11.
J Virol ; 96(22): e0129522, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36300937

RESUMO

Bromodomain-containing protein 4 (Brd4) is a member of the bromodomain and extraterminal domain (BET) family of proteins. Brd4 regulates human papillomavirus (HPV) transcription, genome replication, and segregation by binding to the E2 protein. The SETD6 methyltransferase binds to and methylates Brd4 at lysine 99. We investigated the interactions of SETD6 and Brd4 with E2 and their role in HPV transcription. SETD6 coimmunoprecipitated with the E2 transactivation domain, and its depletion in CIN612 episomal cells reduced human papillomavirus type 31 (HPV-31) transcription, whereas depletion of SETD6 in integrated HPV cell lines had no effect on viral gene expression. The mutant Brd4 K99R (bearing a change of K to R at position 99), which cannot be methylated by SETD6, displayed decreased binding to HPV-31 E2, suggesting that SETD6 methylation of Brd4 also influences E2 association with the Brd4 protein. Using chromatin immunoprecipitation, SETD6 was detected at the enhancer region of the HPV long control region. We propose that methylation of Brd4 at K99 by SETD6 is an important mechanism for E2-Brd4 association and HPV transcriptional activation. IMPORTANCE Human papillomaviruses (HPV) cause cervical, anogenital, and oral cancers. Brd4 plays an important role in the HPV life cycle. SETD6 was recently shown to methylate Brd4. The current study demonstrates that methylation of Brd4 by SETD6 in HPV-episomal cells is required for the activation of viral transcription. This study illustrates a novel regulatory mechanism involving E2, Brd4, and SETD6 in the HPV life cycle and provides insight into the multiple roles of Brd4 in viral pathogenesis.


Assuntos
Papillomavirus Humano 31 , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Proteínas Metiltransferases , Transcrição Viral , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Papillomavirus Humano 31/genética , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/genética , Proteínas Metiltransferases/metabolismo , Fatores de Transcrição/metabolismo
12.
Clin Immunol ; 243: 109105, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36055572

RESUMO

Epigenetic modifications contribute to lymphomagenesis. Here, we performed an expression clustering analysis and identified two epigenetic-related clusters (EC1 and EC2). EC1 presented abundant TP53, MYD88, HIST1H1D, HIST1H1C, KMT2D and EZH2 mutations and an inferior prognosis. Pathways involved in the regulation of DNA methylation/demethylation, histone methyltransferase activity, and protein methyltransferase activity were significantly enriched in EC1. However, EC2 was frequently accompanied by B2M, CD70 and MEF2B mutations, which presented with enrichments in DNA damage repair, cytokine-mediated and B-cell activated immune signaling, increased levels of CD8+ T-, γδT- and T helper-cells, as well as immune scores and immunogenic cell death (ICD) modulators. According to the prediction, EC1 was more sensitive to vorinostat, serdemetan and navitoclax. However, ruxolitinib, cytarabine and CP466722 were more suitable treatments for EC2. The novel immune-related epigenetic signature exhibits promising clinical predictive value for diffuse large B-cell lymphoma (DLBCL), particularly for guiding epigenetic therapeutic regimens. R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) based combination treatment regimens are suggested.


Assuntos
Epigênese Genética , Linfoma Difuso de Grandes Células B , Transcriptoma , Anticorpos Monoclonais Murinos/genética , Anticorpos Monoclonais Murinos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ciclofosfamida/uso terapêutico , Citarabina/uso terapêutico , Citocinas/genética , Doxorrubicina/uso terapêutico , Epigênese Genética/imunologia , Histona Metiltransferases/genética , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Fator 88 de Diferenciação Mieloide/genética , Prednisona/uso terapêutico , Prognóstico , Proteínas Metiltransferases/genética , Rituximab/uso terapêutico , Vincristina/uso terapêutico , Vorinostat/uso terapêutico
13.
Life Sci Alliance ; 5(12)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914811

RESUMO

Cell migration is a complex process, tightly regulated during embryonic development and abnormally activated during cancer metastasis. RAS-dependent signaling is a major nexus controlling essential cell parameters including proliferation, survival, and migration, utilizing downstream effectors such as the PI3K/AKT signaling pathway. In melanoma, oncogenic mutations frequently enhance RAS, PI3K/AKT, or MAP kinase signaling and trigger other cancer hallmarks among which the activation of metabolism regulators. PFKFB4 is one of these critical regulators of glycolysis and of the Warburg effect. Here, however, we explore a novel function of PFKFB4 in melanoma cell migration. We find that PFKFB4 interacts with ICMT, a posttranslational modifier of RAS. PFKFB4 promotes ICMT/RAS interaction, controls RAS localization at the plasma membrane, activates AKT signaling and enhances cell migration. We thus provide evidence of a novel and glycolysis-independent function of PFKFB4 in human cancer cells. This unconventional activity links the metabolic regulator PFKFB4 to RAS-AKT signaling and impacts melanoma cell migration.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas c-akt , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Proteínas Metiltransferases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
14.
Poult Sci ; 101(9): 102017, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35901648

RESUMO

Flavivirus RNA cap-methylation plays an important role in viral infection, proliferation, and escape from innate immunity. The methyltransferase (MTase) of the flavivirus NS5 protein catalyzes viral RNA methylation. The E218 amino acid of the NS5 protein MTase domain is one of the active sites of flavivirus methyltransferase. In flaviviruses, the E218A mutation abolished 2'-O methylation activity and significantly reduced N-7 methylation activity. Tembusu virus (TMUV, genus Flavivirus) was a pathogen that caused neurological symptoms in ducklings and decreased egg production in laying ducks. In this study, we focused on a comprehensive understanding of the effects of the E218A mutation on TMUV characteristics and the host immune response. E218A mutation reduced TMUV replication and proliferation, but did not affect viral adsorption and entry. Based on a TMUV replicon system, we found that the E218A mutation impaired viral translation. In addition, E218A mutant virus might be more readily recognized by RIG-I-like receptors to activate the corresponding antiviral immune signaling than WT virus. Together, our data suggest that the E218A mutation of TMUV MTase domain impairs viral replication and translation and may activates RIG-I-like receptor signaling, ultimately leading to a reduction in viral proliferation.


Assuntos
Flavivirus , Metiltransferases , Animais , Galinhas/metabolismo , Patos/metabolismo , Flavivirus/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Metiltransferases/farmacologia , Proteínas Metiltransferases/metabolismo , Proteínas Metiltransferases/farmacologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
15.
Methods Mol Biol ; 2529: 109-120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733012

RESUMO

The catalytic activity of histone methyltransferases is not restricted to histones but also includes noncanonical substrates. Increasing evidence shows that histone methyltransferases methylate themselves, and automethylation has emerged as a self-regulatory mechanism. Here, we introduce experimental procedures to identify automethylation sites of histone methyltransferases and to investigate the function of automethylation in a reconstituted biochemical system and in cellular contexts.


Assuntos
Histonas , Metiltransferases , Histona Metiltransferases , Histonas/metabolismo , Metilação , Proteínas Metiltransferases
16.
Methods Mol Biol ; 2529: 3-40, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733008

RESUMO

Dynamic posttranslational modifications to canonical histones that constitute the nucleosome (H2A, H2B, H3, and H4) control all aspects of enzymatic transactions with DNA. Histone methylation has been studied heavily for the past 20 years, and our mechanistic understanding of the control and function of individual methylation events on specific histone arginine and lysine residues has been greatly improved over the past decade, driven by excellent new tools and methods. Here, we will summarize what is known about the distribution and some of the functions of protein methyltransferases from all major eukaryotic supergroups. The main conclusion is that protein, and specifically histone, methylation is an ancient process. Many taxa in all supergroups have lost some subfamilies of both protein arginine methyltransferases (PRMT) and the heavily studied SET domain lysine methyltransferases (KMT). Over time, novel subfamilies, especially of SET domain proteins, arose. We use the interactions between H3K27 and H3K36 methylation as one example for the complex circuitry of histone modifications that make up the "histone code," and we discuss one recent example (Paramecium Ezl1) for how extant enzymes that may resemble more ancient SET domain KMTs are able to modify two lysine residues that have divergent functions in plants, fungi, and animals. Complexity of SET domain KMT function in the well-studied plant and animal lineages arose not only by gene duplication but also acquisition of novel DNA- and histone-binding domains in certain subfamilies.


Assuntos
Histonas , Proteínas Metiltransferases , Animais , Arginina/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Histona-Lisina N-Metiltransferase/química , Histonas/metabolismo , Lisina/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Metiltransferases/genética , Proteínas Metiltransferases/metabolismo , Processamento de Proteína Pós-Traducional
17.
Methods Mol Biol ; 2529: 313-325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733022

RESUMO

Posttranslational methylation of amino acid side chains in proteins mainly occurs on lysine, arginine, glutamine, and histidine residues. It is introduced by different protein methyltransferases (PMTs) and regulates many aspects of protein function including stability, activity, localization, and protein/protein interactions. Although the biological effects of PMTs are mediated by their methylation substrates, the full substrate spectrum of most PMTs is not known. For many PMTs, their activity on a particular potential substrate depends, among other factors, on the peptide sequence containing the target residue for methylation. In this protocol, we describe the application of SPOT peptide arrays to investigate the substrate specificity of PMTs and identify novel substrates. Methylation of SPOT peptide arrays makes it possible to study the methylation of many different peptides in one experiment at reasonable costs and thereby provides detailed information about the specificity of the PMT under investigation. In these experiments, a known substrate sequence is used as template to design a SPOT peptide array containing peptides with single amino acid exchanges at all positions of the sequence. Methylation of the array with the PMT provides detailed preferences for each amino acid at each position in the substrate sequence, yielding a substrate sequence specificity profile. This information can then be used to identify novel potential PMT substrates by in silico data base searches. Methylation of novel substrate candidates can be validated in SPOT arrays at peptide level, followed by validation at protein level in vitro and in cells.


Assuntos
Peptídeos , Proteínas Metiltransferases , Sequência de Aminoácidos , Lisina/metabolismo , Metilação , Metiltransferases/metabolismo , Peptídeos/metabolismo , Proteínas Metiltransferases/metabolismo , Especificidade por Substrato
18.
Nucleic Acids Res ; 50(12): 6903-6918, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35694846

RESUMO

Gliomas are one of the most common and lethal brain tumors among adults. One process that contributes to glioma progression and recurrence is the epithelial to mesenchymal transition (EMT). EMT is regulated by a set of defined transcription factors which tightly regulate this process, among them is the basic helix-loop-helix family member, TWIST1. Here we show that TWIST1 is methylated on lysine-33 at chromatin by SETD6, a methyltransferase with expression levels correlating with poor survival in glioma patients. RNA-seq analysis in U251 glioma cells suggested that both SETD6 and TWIST1 regulate cell adhesion and migration processes. We further show that TWIST1 methylation attenuates the expression of the long-non-coding RNA, LINC-PINT, thereby promoting EMT in glioma. Mechanistically, TWIST1 methylation represses the transcription of LINC-PINT by increasing the occupancy of EZH2 and the catalysis of the repressive H3K27me3 mark at the LINC-PINT locus. Under un-methylated conditions, TWIST1 dissociates from the LINC-PINT locus, allowing the expression of LINC-PINT which leads to increased cell adhesion and decreased cell migration. Together, our findings unravel a new mechanistic dimension for selective expression of LINC-PINT mediated by TWIST1 methylation.


Assuntos
Glioma , Proteínas Metiltransferases , RNA Longo não Codificante , Proteína 1 Relacionada a Twist , Humanos , Transição Epitelial-Mesenquimal , Proteínas Nucleares/genética , Proteínas Metiltransferases/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Glioma/metabolismo , Glioma/patologia , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral
19.
Biochimie ; 200: 27-35, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35550916

RESUMO

Among the protein lysine methyltransferases family members, it appears that SETD6 is highly similar and closely related to SETD3. The two methyltransferases show high similarity in their structure, which raised the hypothesis that they share cellular functions. Using a proteomic screen, we identified 52 shared interacting-proteins. Gene Ontology (GO) analysis of the shared proteins revealed significant enrichment of proteins involved in transcription. Our RNA-seq data of SETD6 KO and SETD3 KO HeLa cells identified ∼100 up-regulated and down-regulated shared genes. We have also identified a substantial number of genes that changed dramatically in the double KO cells but did not significantly change in the single KO cells. GO analysis of these genes revealed enrichment of apoptotic genes. Accordingly, we show that the double KO cells displayed high apoptotic levels, suggesting that SETD6 and SETD3 inhibit apoptosis. Collectively, our data strongly suggest a functional link between SETD6 and SETD3 in the regulation of apoptosis.


Assuntos
Histona Metiltransferases , Proteínas Metiltransferases , Proteômica , Apoptose/genética , Células HeLa , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Humanos , Proteínas Metiltransferases/genética , Proteínas Metiltransferases/metabolismo , Relação Estrutura-Atividade
20.
J Clin Lab Anal ; 36(5): e24348, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35312113

RESUMO

BACKGROUND: circRNA hsa_circ_0018289-mediated growth and metastasis of CC cells were investigated, as well as the mechanistic pathway. METHODS: Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) was carried out to examine the expression of hsa_circ_0018289, microRNA (miR)-1294, and isoprenylcysteine carboxyl methyltransferase (ICMT). CC cell proliferation, migration, and invasion were evaluated by 5-ethynyl-2'-deoxyuridine (EdU) incorporation, colony formation, transwell assays, Western blot analysis of ICMT, and glycolysis-associated proteins. Dual-luciferase reporter or RNA pull-down analysis of the target interaction between miR-1294 and hsa_hsa_circ_0018289 or ICMT. Xenograft model assay was implemented to assess the role of hsa_circ_0018289 in vivo. Immunofluorescence (IHC) was employed to detect the level of Ki-67. RESULTS: Hsa_circ_0018289 was elevated in CC tissues and cells, its deficiency could repress growth, metastasis, and glycolysis of CC cells in vitro, as well as hamper tumor growth in vivo. Hsa_circ_0018289 sponged miR-1294 while miR-1294 bound with ICMT, and the inhibition of miR-1294 or addition of ICMT could partially relieve the effect caused by hsa_circ_0018289 depletion. CONCLUSION: Hsa_circ_0018289 contributes to malignant development by regulating the miR-1294/ICMT axis, affording novel insight into CC therapy.


Assuntos
MicroRNAs , Proteínas Metiltransferases , RNA Circular , Neoplasias do Colo do Útero , Carcinogênese , Proliferação de Células/genética , Feminino , Humanos , MicroRNAs/genética , Proteínas Metiltransferases/genética , RNA Circular/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA